STRONG \boldsymbol{S}-DOMAINS

S. MALIK and J.L. MOTT
Department of Mathematics, Florida State University, Talahassee, FL 32306, USA

Communicated by H. Bass
Received 8 November 1981

Abstract

S-domains and strong S-rings are studied extensively with special emphasis on integral and polynomial ring extensions. The main theorem of this paper is that for a Prüfer domain R, the polynomial ring $R\left[X_{1}, \ldots, X_{n}\right]$ in finitely many indeterminates is a strong S-domain. We also prove that any Prüfer v-multiplication domain is an S-dornain.

1. Introduction and terminology

All rings under consideration are commutative rings with unity. The concepts of S-domain and strong S-domain are crucial ones and were introduced by Kaplansky [11, p. 26]. Let us recall their definitions. An integral domain R is an S-domain if for each prime ideal P of R of height one the extension $P R[X]$ to the polynomial ring in one variable is also of height one. Call a ring R a strong S-ring if the residue class ring R / P is an S-domain for each prime P of R.

The present paper deals with several elementary properties of strong S-domains and the behaviour of the strong S-property under integral and polynomial ring extensions.

In Section 2 we first prove that the strong S-property is a local property. Then using this result and Theorem 68 of [11] we see immediately that a Prüfer domain is a strong S-domain. One reason that Kaplansky introduced the notion of strong S-domain was to treat the classes of Noetherian domains and Prüfer domains in a unified manner - for if R is either a Noetherian or a Prüfer domain then R is a strong S-domain. Moreover, if R is in either of the two classes of domains, then the following dimension formula holds: $\operatorname{dim} R\left[X_{1}, \ldots, X_{n}\right]=n+\operatorname{dim} R$. Kaplansky observed that for $n=1$ and for R a strong S-domain then $\operatorname{dim} R\left[X_{1}\right]=1+\operatorname{dim} R$. Had the strong S-property been stable under polynomial ring extensions, the above dimension formula could have been obtained by induction for all strong S-domains. However, the strong S-property is not stable, in general, and thus by itself is not the cause for the dimension formula. Nevertheless, we show in Theorem 3.5 that if R is a Prüfer domain, then $R\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ is a strong S-domain. Hilbert's Basis Theorem and connected results give the corresponding result for Noetherian
domains. Thus we define a ring R to satisfy the stably strong S-property, if for each $n, R\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ is a strong S-ring. Thus, Noetherian rings and Prüfer domains are better unified under the concept of stably strong S-property, and the stably strong S-property does in fact imply the above dimension formula.

Using a theorem of Nagata [14] we also prove that if R is a Prüfer domain, then for any prime ideal P of $R\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ of finite height, ht $P=$ little rank P and $R\left[X_{1}, X_{2}, \ldots, X_{n}\right]$ satisfies the saturated chain condition [11, p. 99].

In view of above conclusions we then ask what properties common to Noetherian domains and Prüfer domains cause the stability of strong S-property under polynomial ring extensions. One property that these domains have in common is that their integral closures are Prüfer v-multiplication domains (Prüfer domains are already integrally closed and the integral closure of a Noetherian domain is a Krull domain). Then the natural question arises: Couid the stably strong S-property be caused by the property that the integral closure of a domain R is a Prüfer v-multiplication domain? The answer is no in general for we give an example of Krull domain that is not a strong S-domain. Nevertheless we show in Theorem 4.16 that such a domain at least must be an S-domain. We then use this theorem to conclude in Proposition 4.19 and 4.21 that if R is either Noetherian or Prüfer then the integral closure of R is a stably strong S-domain. Thus the two classes are further unified by this observation.

The ultimate effect of this last observation is to focus the study of stably strong S-property onto the class of Krull domains, a subject we leave for future research.

In Section 5 we study the ' $D+M$ ' construction [9] and other related constructions that inherit the strong S-property from D.

2. Elementary properties

We now give some elementary properties of S-domain and strong S-rings. Note that it is immediate that the direct sum of any finite number of rings is a strong S-ring if and only if each summand is.

Proposition 2.1. A domain R is an S-domain if and only if R_{M} is an S-domain for each maximal ideal M of R.

Proof. Lei R be an S-domain. Fo: ariy maximal ideal M of R, let $P^{e}=P R_{M}$ be a height 1 prime of R_{M}. Clearly P is a height 1 prime ideal of R. But then R is an S-domain, hence $P R[X]=P^{*}$ is a height 1 prime of $R[X]$. Now

$$
P(R[X]]_{R \backslash M}=P R_{M}[X]=P^{*} R_{M}[X]=\left(P R_{M}\right) R_{M}[X]=P^{e} R_{M}[X]
$$

s. $\left.P^{x} R_{M} \mid X\right]$ is a height 1 prime of $R_{M}[X]$ and R_{M} is an S-domain.

Conversely, let R_{M} be an S-domain for each maximal ideal M of R and let P be a height I prime of R contained in a maximal ideal M. Then $P R_{M}$ is a height 1
prime of R_{M}. But then R_{M} is an S-domain, hence $P^{e} R_{M}[X]=\left(P R_{M}\right) R_{M}[X]=$ $P R_{M}[X]$ is a height 1 prime of $R_{M}[X]$ and by taking intersections with $R[X]$ we have $P R[X]$ is a height 1 prime of $R[X]$ and hence by definition R is an S-domain.

Corollary 2.2. The following are equivalent in a domain R :
(i) R is an S-domain.
(ii) R_{S} is an S-domain for each multiplicative system S of R.
(iii) R_{P} is an S-domain for each prime ideal P of R.
(iv) R_{M} is an S-domain for each maximal ideai M of R.

Proof. We prove (i) implies (ii), (ii) implies (iii), (iii) implies (iv) and (iv) implies (i). So let $P_{S}=P R_{S}$ be a prime ideal of R_{S} of height 1 then P is a prime ideal of R of height 1 such that $P \cap S=\emptyset$. Since R is an S-domain it follows $P R[X]$ is a height 1 prime ideal of $R[X]$. Therefore $P_{S} R_{S}[X]=(P R[X])_{S}$ is also a prime ideal of height 1 in $(R[X])_{S}=R_{S}[X]$. So R_{S} is an S-domain proving thereby (i) implies (ii).

To prove (ii) implies (iii) take $S=R \backslash P$ where P is any prime ideal of R.
Clearly (iii) implies (iv) since each maximal ideal is a prime ideal and (iv) implies (i) follows from Proposition 2.1.

Proposition 2.3. A ring R is a strong S-ring if and only if R_{M} is a strong S-ring for each maximal ideal M of R.

Proof. Since $R_{M} / P R_{M}=(R / P)_{\bar{M}}$ where $\bar{M}=(R \backslash M)+P / P, P$ being a prime ideal of R contained in M, it is enough to prove that R is an S-domain if and only if R_{M} is an S-domain for each maximal ideal M of R but then Proposition 2.1 completes the proof.

Corollary 2.4. The following are equivalent for any ring R :
(i) R is a strong S-ring
(ii) R_{S} is a strong S-ring for each multiplicative system S of R
(iii) R_{P} is a strong S-ring for each prime P of R
(iv) R_{M} is a strong S-ring for each maximal ideal M of R.

In view of above corollary and Theorem 68 [11] the following proposition is immediate.

Proposition 2.5. A Prüfer domain is a strong S-ring.
Proposition 2.6. Let R be a domain, then R is a strong S-ring if and only if each flat overring of R is strong S-ring.

Proof. Let T be a flat overring of R and suppose that R is a strong S-ring. For each maximal ideal M of $T, T_{M}=R_{M \cap R}$ [16]. Since R is a strong S-ring, $R_{M \cap R}$ is also
a strong S-ring so T_{M} is a strong S-ring. But then by Proposition $2.3 T$ is a strong S-ring.

The converse follows by Corollary 2.4.
Proposition 2.7. Let R be a domain. Suppose R is a strong S-ring, and R_{1}, \ldots, R_{n} are quasi-semi-local flat overrings of R contained in the quotient field of R; then $R^{\prime}=\bigcap_{i=1}^{n} R_{i}$ is a strong S-ring.

Proof. Since each R_{i} is a flat overring of R, by Proposition $2.6 R_{i}$ is a strong S ring. Also $R \subseteq R^{\prime} \subseteq R_{i} \subseteq K$ and since R_{i} are flat overrings of R, it follows that R_{i} are flat overrings of R^{\prime}. Now every nonunit of R^{\prime} is a nonunit in some R_{i}. Thus the set of nonunits of R^{\prime} is exactly the union of the finite set of contracted maximal ideals of R_{i} for $1 \leq i \leq n$. If M is any maximal ideal of R and $x \in M$ then $x \in M_{i}$ for some maximal ideal M_{i} of some R_{i}. Hence $x \in M_{i} \cap R^{\prime}$ so $M \subseteq \bigcup\left(M_{i_{k}} \cap R^{\prime}\right)$; but R_{i} are semi-local, the union $\bigcup\left(M_{i_{k}} \cap R^{\prime}\right)$ is a finite union so that $M \subseteq M_{i_{k}} \cap R^{\prime}$ for some i_{k}. But then M was maximal so $M=M_{i_{k}} \cap R^{\prime}$, showing that each maximal ideal of R^{\prime} is a contraction of some maximal ideal of R_{i}. Let M be any maximal ideal of R. If $M=M_{i} \cap R^{\prime}, M_{i}$ being a maximal ideal of R_{i}, then $R_{i_{M_{i}}}=R_{M_{i} \cap R}^{\prime}=R_{M}^{\prime}$ as R_{i} is a flat overring of R^{\prime}. Therefore, as each R_{i} is a strong S-ring, $R_{i_{M}}$ is a strong S-ring and R_{M}^{\prime} is a strong S-ring. The conclusion now is immediate from Proposition 2.3.

The proofs of Proposition 2.8 and Corollary 2.9 are easy applications of Proposition 1.1 of [2] and Propositions 2.3 and 2.7.

Proposition 2.8. If R is a non-quasi-local domain, then R is a strong S-ring if and only if $T(x)$, the integral transform of (x) for each nonunit x of R, is a strong S-ring.

Corollary 2.9. Let R be a domain and A be a finitely generated ideal of R. Then if R is a strong S-ring the integral transform $T(A)$ is also a strong S-ring.

3. Strong S-rings and polynomial extensions

In this section we prove necessary and sufficient conditions for the polynomial ring $R\left[X_{1}, \ldots, X_{n}\right]$ to inherit the S-property or the strong S-property. In particular, we prove that if R is a Prüfer domain, then $R\left[X_{1}, \ldots, X_{n}\right]$ is a strong S-domain.

Theorem 3.1. Let R be an S-domain and $X=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ be a finite set of indeterminates over R. Then $R[X]$ is an S-domain if and only $R_{P}[X]$ is an S-domain for each prime ideal P of R.

Proof. Let $R[X]$ be an S-domain, then $R_{P}[X]=(R[X])_{R \backslash P}$ for each prime ideal P
of R is a quotient ring of $R[X]$, hence, is an S-domain.
Conversely, let $R_{P}[X]$ be an S-domain for each prime ideal P of R and Q be a height 1 prime of $R[X]$. If $Q \cap R=P$ two cases arise according as P is nonzero or zero. Suppose first $P \neq(0)$, then $R[X]_{P[X]} \supseteq R[X]_{R \backslash P}=R_{P}[X]$. As $P[X] \subseteq Q$ and height of Q is 1 , so $P[X]=Q$. Therefore $R[X]_{Q}=R[X]_{P[X]}$ is a quotient ring of $R_{P}[X]$ and hence an S-domain. Thus $Q R[X]_{Q}[Y]=Q R[X, Y]_{Q}$ is a prime ideal of $R[X, Y]_{Q}$ of height 1. Consequently, $Q[Y]=Q R[X, Y]_{Q} \cap R[X, Y]$ is a prime ideal of $R[X, Y]$ of height 1 and $R[X, Y]$ is an S-domain. If $P=(0)$ then $R_{P}[X]=K[X]$, where K is a quotient field of R, is Noetherian and hence an S-domain. Also $Q K[X]$ is a prime ideal of $K[X]$ of height 1 . Thus $Q K[X, Y]$ is also of height 1 in $K[X, Y]$. It now follows that $Q[Y]=Q[X, Y] \cap R[X, Y]$ is a height 1 prime of $R[X, Y]$.

Theorem 3.2. Let R be a strong S-domain and $X=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ a finite set of indeterminates over R. Then $R[X]$ is a strong S-ring iff $R_{P}[X]$ is a strong S-ring for each prime ideal P of R.

Proof. If $R[X]$ is a strong S-ring, then for each prime ideal P of R, $R_{P}[X]=R[X]_{R \backslash P}$ is a quotient ring of $R[X]$ and hence a strong S-ring.

Conversely, suppose that $R_{P}[X]$ is a strong S-ring for each prime ideal P of R and $Q_{1} \subset Q_{2}$ be a pair of adjacent primes of $R[X]$. Also let $Q_{i} \cap R=P_{i}$ for $i=1$ and 2; then $Q_{2} \cap\left(R \backslash P_{2}\right)=\emptyset$ and $Q_{1} R_{P_{2}}[X] \subset Q_{2} R_{P_{2}}[X]$ is a pair of adjacent primes of $R_{P_{2}}[X]$. But $R_{P_{2}}[X]$ is a strong S-ring so that $Q_{1} R_{P_{2}}[X][Y] \subset Q_{2} R_{P_{2}}[X][Y]$ is a pair of adjacent primes of $R_{P_{2}}[X][Y]$. Once again we obtain $Q_{1}[Y] \subset Q_{2}[Y]$ are adjacent primes of $R[X, Y]$. Hence $R[X]$ is a strong S-ring.

Theorem 3.3. Surpose that R is an integral domain and $X=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ a finite set of indeterminates over R. Then $R[X]$ is an S-domain if and only if $R[X]_{M[X]}$ is an S-domain for each maximal ideal M of R (that is, if and only if $R(X)$ is an S-domain).

Proof. Since $R[X]_{M \mid X]}$ is a quotient ring of $R[X]$, if $R[X]$ is an S-domain, $R[X]_{M T X]}$ is an S-domain. Conversely, let Q be a prime ideal of height 1 in $R[X]$. If $Q \cap R=(0)$ then $Q K[X]$ is a height 1 prime of $K[X]$, where K is the quotient field of $R[X]$. But $K[X]$ is a Noetherian domain, hence an S-domain. Thus $Q K[X][Y]$ is a height 1 prime ideal of $K[X][Y]$. But then $Q K[X][Y] \cap R[X, Y]=Q[Y]$ is a height 1 prime of $R[X, Y]$. If $Q \cap R=P$, then $P \subseteq M$ for some maximal ideal M of R. Now since Q is a height 1 prime $Q=P[X]$ and $P R[X] \subseteq M[X]$, it follows that $Q R[X]_{M[X]}$ is a height 1 prime ideal of $R[X]_{M \mid X]}$ which is an S-domain, so $Q R[X]_{M \mid X]}[Y]$ is a height 1 prime of $R[X]_{M \mid X]}\left[i^{\prime}\right]$. But then $Q R[X]_{M \mid X]}[Y] \cap$ $R[X, Y]=Q[Y]=Q[Y]$ is also a height 1 prime of $R[X, Y]$. So $R[X]$ is an S-domain.

The last conclusion follows immediately from the fact that the maximai ideal of $R(X)$ are of the form $M(X)$ when M is a maximal ideal of P and also that $R[X]_{M[X]}=R(X)_{M(X)}$.

Corollary 3.4. Let R be a Prüfer domain, then $R[X]$ is an S-domain.

Proof. Since R is a Prüfer domain, $R(X)$ is a Prüfer domain by Proposition 33.4 of [7]. Now for each maximal ideal M of $R\left(R(X)_{M(X)}=R[X]_{M[X]}\right.$ so $R[X]_{M[X]}$ is a strong S-domain and hence an S-domain, but then by Theorem 3.3 the conclusion follows.

One sees readily that $R(X)$ is a strong S-domain if and only if $R[X]_{M X X}$ is a trong S-domain for each maximal ideal M of R. But then the following question comes to mind: Is $R[X]$ a strong S-domain if and only if $R(X)$ is a strong S-domain?

It is very clear that if $R[X]$ is a strong S-ring, $R(X)$ is a strong S-ring but it is in other direction that deep waters run. For any pair $Q_{1} \subset Q_{2}$ of adjacent primes of $R[X]$ we are unable to prove that $Q_{1}[Y] \subset Q_{1}[Y]$ are adjacent primes of $R[X, Y]$ without any condition on R. In fact we show that the condition that R is a Prüfer domain is sufficient.

Theorem 3.5. Let R be a Prüfer domain and let $X=\left\{X_{1}, \ldots, X_{n}\right\}$ be a finite set of indeterminates over R. Then $R[X]$ is a strong S-domain.

Proof. Let $Q_{1} \subset Q_{2}$ be a adjacent primes in $R[X]$ and let $P_{i}=Q_{i} \cap R$. Let $\bar{R}=R / P_{1}$, $\bar{P}_{3}=P_{2} / P_{1}, S=\bar{R} \backslash \bar{P}_{2}, T=R \backslash P_{2}$ and $V=R_{T} / P_{1} R_{T}$.

Then $(\bar{R}[X])_{S}=(\bar{R})_{S}[X]=V[X]$.
Now V is a valuation ring since R is a Prüfer domain. But, more than that, we claim that $\operatorname{dim} V \leq 1$. This follows since $Q_{2} / Q_{1} \cap R=P_{2}$ and the pair ($R \cdot P_{1}, R[X] / Q_{1}$) has the going down property because R / P_{1} is a Prüfer domain. Therefore, ht $\left(P_{2}, P_{1}\right) \leq 1$ since $\mathrm{ht}\left(Q_{2} / Q_{1}\right)=1$.

Next, if we know that $V[X]$ is a strong S-domain, the proof of the theorem would be complete. For the prime ideals $\bar{Q}_{i}=Q_{i} / P_{1}[X]$ in $R[X] / P_{1}[X]=\bar{R}[X]$ lift to adjacent prime ideals in $V[X]$ since $Q_{2} \cap T=\emptyset$. But $V[X]$ a strong S-domain implies that $\bar{Q}_{1} V[X, Y] \subset \bar{Q}_{2} V[X, Y]$ are adjacent primes in $V[X, Y]$. But then it is immediate that $Q_{1} R[X, Y] \subset Q_{2} R[X, Y]$ must be adjacent primes of $R[X, Y]$.

Therefore, let us show that if V is a valuation ring of rank 1 (that is, $\operatorname{dim} V=1$) then $V[X]$ is a strong S-domain (note the 0 -dimensional case is obvious).

I ct $Q_{1} \subset Q_{2}$ be adjacent primes of $V[X]$ and $P_{i}=Q_{1} \cap V$. We may assume $Q_{1} \neq(0)$ for otherwise ht $Q_{2}=1$ and, since $V[X]$ is an S-domain by Corollary 2.13, hi $Q_{2}[Y]=1$ in $V[X, Y]$. Moreover, we may assume $P_{2} \neq(0)$ since otherwise Q_{1} and Q_{2} would lift to adjacent primes in the strong S-domain $K[X]$ and, in turn, $\left.Q_{1} K \mid X, Y\right]$ and $Q_{2} K[X, Y]$ are adjacent primes in $K[X, Y]$. But then $Q_{1} V[X, Y]$ and $Q_{2} I^{\prime}[X, Y]$ must be adjacent primes in $V[X, Y]$.

Thus, we have reduced to proving the theorem in the case that V is valuation ring of dimension one, $Q_{1} \subset Q_{2}$ are adjacent primes of $V[X]$ such that $Q_{1} \cap V=(0)$ and $Q, \cap V=M$, the maximal ideal of V.

A concequence of Nagata's theorem [14] is that all saturated chains of prime
ideals of $V[X, Y]$ between $Q_{2}[Y]$ and (0) have the same length. Thus, $Q_{1}[Y]$ and $Q_{2}[Y]$ will be adjacent primes if and only if ht $Q_{2}[Y]=1+$ ht $Q_{1}[Y]$. Let us use Nagata's theorem to determine each height:

$$
\begin{aligned}
\text { ht } Q_{2}[Y]= & \text { ht } M+\operatorname{tr} \operatorname{deg}_{V} V[X, Y]-\operatorname{tr} \operatorname{deg}_{V / M} V[X, Y] / Q_{2}[Y] \\
& =1+(n+1)-\left(\operatorname{tr} \operatorname{deg}_{V / M} V[X] / Q_{2}+1\right) \\
& =n+1-\operatorname{tr} \operatorname{deg}_{V / M} V[X] / Q_{2}, \\
\text { ht } Q_{1}[Y]= & \operatorname{tr} \operatorname{deg}_{V} V[X, Y]-\operatorname{tr} \operatorname{deg}_{V} V[X, Y] / Q_{1}[Y] \\
& =n-\operatorname{tr} \operatorname{deg}_{V} V[X] / Q_{1} .
\end{aligned}
$$

Thus, we see that $Q_{1}[Y]$ and $Q_{2}[Y]$ are adjacent primes if and only if

$$
\operatorname{tr} \operatorname{deg}_{V} V[X] / \underline{Q}_{1}=\operatorname{tr} \operatorname{deg}_{V / M} V[X] / Q_{2}
$$

To prove this equality we apply Nagata's theorem again. Let $A=V[X] / Q_{1}$ and $P=Q_{2} / Q_{1}$. Since $Q_{1} \cap V=(0), V$ can be embedded in A and $P \cap V=M$. Since Q_{1} and Q_{2} are adjacent primes of $V[X]$,

$$
\text { ht } \begin{aligned}
P & =1 \\
& =\text { ht } M+\operatorname{tr}^{\operatorname{deg}_{V}} A-\operatorname{tr} \operatorname{deg}_{V M} A / P \\
& =1+\operatorname{tr} \operatorname{deg}_{V} V[X] / Q_{1}-\operatorname{tr} \operatorname{deg}_{V / M} V[X] / Q_{2} .
\end{aligned}
$$

In other words, the two transcendence degrees are equal, $Q_{1}[Y]$ and $Q_{2}[Y]$ are adjacent primes in $V[X, Y]$, and the proof is complete.

Corollary 3.6. Suppose that R is a Prüfer domain. Then any finitely generated extension $R\left[a_{1}, \ldots, a_{n}\right]$ is a strong S-ring.

Proof. The ring $R\left[a_{1}, \ldots, a_{n}\right]$ is a homomorphic image of $R\left[X_{1}, \ldots, X_{n}\right]$.
Definition 3.7. The little rank of a prime ideal P of a ring R is the length of the shortest saturated chain descending from P to a minimal prime of R.

Let us extend Nagata's theorem [14] slightly.
Theorem 3.8. Let R be a Prüfer domain and Q be a prime ideal of $R\left[X_{1}, \ldots, X_{n}\right]$ of finite height, then little rank $Q=$ ht Q.

Proof. Let $Q \cap R=P$, then ht P is also finite, since

$$
\text { ht } \begin{aligned}
Q & =\text { ht } P\left[X_{1}, \ldots, X_{n}\right]+\text { ht }\left(Q / P\left[X_{1}, \ldots, X_{n}\right]\right) \text { by Theorem 1 [3] } \\
& \geq \text { ht } P\left[X_{1}, \ldots, X_{n}\right]=\text { ht } P .
\end{aligned}
$$

Now to prove that little rank $Q=$ ht Q it is enough to prove

$$
\text { little rank } Q R_{P}\left[X_{1}, \ldots, X_{n}\right]=\text { ht } Q R_{P}\left[X_{1}, \ldots, X_{n}\right] .
$$

Hence we may assume R is a valuation ring of finite rank. But now by Nagata's theorem we get the desired conclusion.

Corollary 3.9. Under the hypothesis of Theorem 3.8 all saturated chains of prime ideals of $R\left[X_{1}, \ldots, X_{n}\right]$ descending from Q to (0) have the same length.

Consequently, if R is Prüfer domain in which each prime ideals has finite height, then $R\left[X_{1}, \ldots, X_{n}\right]$ satisfies the saturated chain condition, that is, if $P \subset Q$ are prime ideals of $R\left[X_{1}, \ldots, X_{n}\right]$, then all saturated chains of prime ideals between $!$ and Q have the same length.

Definiaion 3.10. If R is a domain and k is a nonnegative integer such that for each valuation overring V of $R \operatorname{dim} V \leq k$ and there exists at least one valuation overring whose dimension is exactly equal to k, then we say that R has valuative dimension k and write $\operatorname{dim}_{V} R=k$. If no such k exists, then we say that $\operatorname{dim}_{V} R=\infty$.

It is well known that $\operatorname{dim} R \leq \operatorname{dim}_{V} R$. Moreover, if $R\left[X_{1}, \ldots, X_{n}\right]$ is a strong S-ring for each positive integer n then $\operatorname{dim} R=\operatorname{dim}_{V} R$ provided $\operatorname{dim}_{V} R<\infty$. The converse in general is false for there exist domains R for which $\operatorname{dim} R=\operatorname{dim}_{V} R$ but R is not a strong S-domain. We give the following example.

Example 3.11. If R has finite dimension n_{0} and for each positive integer m, n_{m} denotes the dimensions of $R\left[X_{1}, \ldots, X_{n}\right]$, then the sequence $\left(n_{i}\right)_{i=0}^{\infty}$ is called the dimension sequence of R and the sequence $\left\{d_{i}\right\}_{i=1}^{\infty}$, where $d_{i}=n_{i}-n_{-1}$ is called the difference sequence for R. Denote by the set of sequences $s=\left\{n_{i}\right\}_{i=0}^{\infty}$ of nonnegative integers such that the associated difference sequence $\left\{d_{i}\right\}_{i=1}^{\infty}$ satisfies $i \leq d_{i, 1} \leq d_{t} \leq n_{0}+1$. For $s_{1}, \ldots, s_{r} \in . s_{i}=\left\{n_{j}^{(i)}\right\}_{j=0}^{\infty}, \sup \left\{s_{1}, \ldots, s_{r}\right\}$ is defined to be the sequence $s=\left\{n_{j}\right\}_{j=0}^{\infty}$, where $n_{j}=\sup \left\{n_{j}^{(i)}, \ldots, n_{j}^{(r)}\right\}$ for each $j \geq 0$.

In [1], it is proved that given a dimension sequence s and field K there is a domain R with quotient field K and dimension sequence s. A method to construct a semi-quasi-local domain that ha; s as its dimension sequence is also given. Following this we construct the sequences $\{1,3,4,5, \ldots\}$ and $\{3,4,5,6, \ldots\}$ in .t. By Lemma 4.7 and Proposition 4.8 in [1], there exist domains $J_{1}=R_{1}+M_{1}$ and $J_{2}=R_{2}+M_{2}$ with respective dimension sequence $\{1,3,4,5, \ldots\}$ and $\{3,4,5,6, \ldots\}$. Set $R=J_{1} \cap J_{2}$ then by Theorem 4.10 in [1], J_{1} and J_{2} are quotient rings of R and $s=\{3,4,5,6, \ldots\}$ is the dimension sequence of R. Here $\operatorname{dim} R=3$ and $\operatorname{dim} R\left[X_{1}, X_{2}, X_{3}\right]=6$ so that $\operatorname{dim}_{1} R=3$ [7]. As J_{1} is a quotient ring of R and not a strong S-ring, R cannot be a strong S-ring. The reason why J_{1} fails to be a strong S-ring is because dial $J_{1}\left|X_{1}\right|-3$ and if J_{1} were to be a strong S-ring $\operatorname{dim} J_{1}\left[X_{1}\right]$ would have to be 2 .

4. Strong S-rings and integral extensions

Here we study various conditions on the domain R or on its integral extension T to study ascent and descent of the strong S-property. The proof of our next lemma is an easy application of the incomparability property of integral extensions and is therefore omitted.

Lemma 4.1. Let T be an integral extension of a domain R and $P_{1} \subset P_{2}$ be a pair of adjacent primes of R. If Q_{i} is a prime ideal of T such that $Q_{i} \cap R=P_{i}, i=1$ and 2 , then $Q_{1} \subset Q_{2}$ is a pair of adjacent primes of T.

Theorem 4.2. Let T be an integral extension of a domain R. Suppose R is a 1-dimensional strong S-ring. Then T is a strong S-ring.

Proof. Since T is a integral over $R, \operatorname{dim} T=\operatorname{dim} R=1$, therefore it is enough to prove T is an S-domain. Let Q be a height 1 prime of T and $P=Q \cap R$, then $P \neq(\mathrm{C})$ and ht $P \geq 1$. But R is 1 -dimensional so ht P must be exactly 1 . Now R is an S-domain hence $P R[X]$ is a height 1 prime of $R[X]$. Also T integral over R implies $T[X]$ is integral over $R[X]$. Moreover, $Q T[X]$ lies over $P R[X]$ so that ht $Q T[X] \leq 1$. But $1 \leq$ ht $Q T[X] \leq 2$ always holds so that ht $Q T[X]=1$; consequently, T is an S-domain.

Corollary 4.3. Let R be a strong S-domain, P a prime ideal of R of depth ≤ 1. If T is an integral extension of R and Q is a prime ideal of T such that $Q \cap R=P$, then T / Q is a strong S-domain.

Proof. R / P is a 1 -dimemsional strong S-domain and T / Q is an integral extension of R / P, therefore by Theorem $4.2 T / Q$ is a strong S-ring.

Corollary 4.4. Let R be a strong S-domain of dimension 2 and P be a prime ideal of height 1 . If T is an integral extension of R and Q is a prime ideal of T such that $Q \cap R=P$, then T / Q is a strong S-ring.

Proof. Since R / P is a domain of dimension ≤ 1 and T / Q is integral over R / P, Corollary 4.3 gives T / Q is a strong S-ring.

Theorem 4.5. Let R be a 2-dimensional integral domain and T an integral extension of R such that T is an S-domain. Then if R is a strong S-ring, T is a strong S-ring.

Proof. Let $Q_{1} \subset Q_{2}$ be a pair of adjacent primes of T and $Q_{i} \cap R=P_{i}, i=1,2$. Without loss of generality we may assume $Q_{1} \neq(0)$, since if $Q_{1}=(0)$, then Q_{2} is a height 1 prime of T and by hypothesis T is an S-domain, therefore (0) $\subset Q_{2}[X]$ are adjacent primes in $T[X]$. Now ht $P_{i} \geq$ ht Q_{i} and $0 \neq Q_{1} \subset Q_{2}$ are adjacent primes,
hence ht $Q_{i}=i$ for $i=1,2$. But then ht $P_{2} \leq 2$ since $\operatorname{dim} R=2$, it follows ht $P_{2}=2$. As $P_{1} \subset P_{2}$, ht P_{1} has to be 1 . Thus $P_{1} \subset P_{2}$ are adjacent primes of R. But R is a strong S-ring implies $P_{1}[X] \subset P_{2}[X]$ are adjacent primes of $R[X]$. Since $Q_{1}[X] \cap$ $R[X]=P_{i}[X], i=1,2$, by Lemma $4.1 Q_{1}[X] \subset Q_{2}[X]$ are adjacent primes of $T[X]$. Thus T is a strong S-ring.

Theorem 4.6. Let R be a domain and T an integral extension of R. Then if T is a strong S-domain, R is a strong S-domain.

Proof. By passage to homorphic images, it is enough to prove the following:
If T is integral over R and T is an S-domain, then R is an S-domain.
So, let P be a prime ideal of R of height 1. Then by Theorem 38 [10], $1 \leq$ ht $P[X] \leq 2$. If hi $P[X]<2$, then ht $P[X]=1$ and we are through. If ht $P[X]=2$ then, as $T[X]$ is integral over $R[X]$ is integral over $R[X]$, there exists a prime ideal Q^{*} of $T[X]$ such that ht $Q^{*}=2$ and $Q^{*} \cap R[X]=P[X]$. Let $Q=Q^{*} \cap T$ in T then $Q \neq(0)$ and ht $Q \leq 1, Q^{*} \cap R=Q^{*} \cap R[X] \cap R=P[X] \cap R=P, Q \cap R=P$, and $P \neq(0)$. It now follows that ht $Q=1$. As T is an S-domain, $\mathrm{h}^{\mathrm{t}} Q[X]$ is 1 . Hence $Q[X] \subset Q^{*}$. But then $P[X] \subseteq Q[X] \cap R[X] \subseteq Q^{*} \cap R[X]$. Therefore $P[X] \subseteq Q[X] \cap R[X] \subseteq P[X]$ implies $Q[X] \cap R[X]=P[X]$. Thus $Q[X]$ and Q^{*} both lie over $P[X]$ which is not possible by INC. Thus R is an S-domain.

Corollary 4.7. If the integral closure \bar{R} of a domain R in its quotient field K is a strong S-domain, then R is a strong S-domain.

Corollary 4.8. Let R be a 1-dimensional strong S-domain and suppose that $X=\left\{X_{1}, \ldots, X_{n}\right\}$ is a finite set of indeterminates over R. Then $R[X]$ is a strong S-domain.

Proof. Since R is a 1 -dimensional strong S-domain, $\operatorname{dim} R\left[X_{1}\right]=2$ so that the integral closure of R is a Prüfer domain by Theorem 30.14 of [7]. Thus, $R\left[X_{1}, \ldots, X_{n}\right]$ is a strong S-domain by Theorem 3.5 and Theorem 4.6.

Theorem 4.9. Let R be an S-domain and T an integral extgension of R. Then, if (R, T) satisfy the GD-property [5], T is also an S-domain.

Proof. Suppose Q is a height 1 prime of T and $Q \cap R=P$ then ht $P=1$ by GD and L.O. Now R is an S-domain, thus ht $P[X]$ in $R[X]$ is also 1 . As $T[X]$ is integral over $R[X]$ and $Q[X] \cap R[X]=: P[X]$, ht $Q[X] \leq 1$. As $Q[X] \neq 0$, ht $Q[X]=1$. Thus T is an S-domain.

Corollary 4.10. If R is in integrally closed S-domain and T is integral extension of R. then T is an S-domain.

Corollary 4.11. If R is an S-domain and T is a flat R-module such that T is integral over R, then T is also an S-domain.

Proof. The GD-property holds.
Proposition 4.12. If R is a GD-strong S-domain and T is integral over R then T is a strong S-ring.

Proof. Let Q be any prime ideal of T and $Q \cap R=P$, then T / Q is integral over R / P and R / P is GD [5]. Therefore T / Q is an S-domain by Theorem 4.6. Since Q was any prime ideal of T it follows T is a strong S-ring.

Theorem 4.13. Let R be a strong S-domain, T an integral extension of R such that (R, T) satisfy the GB-property [15]. Then T is a strong S-ring.

Proof. Let $P^{*} \subset Q^{*}$ be a pair of adjacent primes of T and $P^{*} \cap R=P, Q^{*} \cap R=Q$. Then by definition of the GB-property $P \subset Q$ is a pair of adjacent primes of R. But R is a strong S-ring so that $P[X] \subset Q[X]$ is a pair of adjacent primes of $R[X]$. hence by Lemma 4.1 $P^{*}[X] \subset Q^{*}[X]$ are adjacent primes in $T[X]$. Thus T is a strong S-ring.

Corollary 4.14. Suppose that R is a strong S-domain. Moreover, suppose R is a GB-ring. Then \bar{R} is a strong S-ring, where \bar{R} denotes the integral closure of R.

Theorem 4.15. Let R be a domain with quotient field K and \bar{R} its integral closure in K. If \bar{R} is a PVMD and T any integral extension of R then T is an S-domain.

Proof. Let Q be a height 1 prime of T. To prove $Q[X]$ is a height 1 prime of $T[X]$, we use the following result of Seidenberg [17]: $Q T[X]$ is a height 1 prime if each prime \bar{Q} of \bar{T} the integral closure of T in the quotient field L of T such that $\bar{Q} \cap T=Q$, is such that $\bar{T}_{\bar{Q}}$ is a valuation ring. So let \bar{Q} be a prime ideal of \bar{T} such that $\bar{Q} \cap T=Q$. Since ht $Q=1$, ht $\bar{Q}=1$ also. Furthermore, ht $(\bar{Q} \cap \bar{R})=1$, since the GD-property holds for (\bar{R}, \bar{T}). Thus $\bar{Q} \cap \bar{R}$ is a t-ideal of \bar{R} and \bar{R} is a PVMD. It follows that $\bar{R}_{\bar{R} \backslash(\emptyset \cap \bar{R})}$ is a valuation ring of rank 1. If $S=\bar{T}_{\bar{R} \backslash(\bar{\varrho} \cap \bar{R})}$, then S in integral closure of $\bar{R}_{\bar{R} \backslash(\bar{Q} \cap \bar{R})}$ in L and $\bar{Q} S$ is a maximal ideal of S. Moreover, S is a Prüfer domain being the integral closure of a valuation ring and therefore $S_{Q S}$ is a valuation ring of rank 1 . But

$$
S_{\bar{Q} S}=\left[\bar{T}_{\bar{R} \backslash(\bar{Q} \cap \bar{R})}\right]_{\bar{Q} T_{R} \backslash(Q \cap R)}=\bar{T}_{\bar{Q}}
$$

so that $\bar{T}_{\bar{Q}}$ is a valuation ring. Hence $Q[X]$ is a height 1 prime of $T[X]$ and T is an S-domain.

Remark 4.16. The proof of Theorem 4.15 only required R to be a P-domain in th: terminology of [13].

We have seen in Theorem 4.15 that if the integral closure of a domain R is a PMVD, then any integral extension of R is an S-domain, in particular R itself is an S-domain. In fact, if R were a PVMD to begin with and P a height 1 prime, then R_{P} is a valuation ring of rank 1 and $P R_{P}[X]$ is also a height 1 prime of $R_{P}[X]$ as R_{P} is a strong S-domain so an S-domain. Hence $P R_{P}[X] \cap R[X]=P R[X]$ is also a height 1 prime in $R[X]$. Thus a PVMD is an S-domain. We show by an example that a PVMD may not be a strong S-ring. The construction of this example is due to G. Evans.

Example 4.17. Let R be a domain which is not a strong S-ring. Consider $T=Z /(p)$ or $T=Z$ according as the characteristic of R is a nonzero prime integer p or zero. If $\left\{X_{d}\right\}_{d \in R}$ is the set of indeterminates over R, indexed by elements of R then consider $T\left[\left\{X_{d}\right\}_{d \in R}\right]=S$. There is a homomorphism $f: S \xrightarrow{\text { onto }} R$ so $S / \mathrm{ker} f=R$. Now S is a PVMD (in fact a Krull domain), but its homomorphic image $S / \mathrm{ker} r$ is not a strong S-ring. Thus, S cannot be a strong S-ring.

Proposition 4.18. Suppose that T is an integral domain integral over a Prüfer domain R. Then T and $T\left[X_{1}, \ldots, X_{n}\right]$ are strong S-domains.

Proof. Let \bar{R} be the integral closure of R in the quotient field of T. Then \bar{R} is a Prüfer domain integral over T. The conclusion follows immediately from Theorems 3.5 and 4.6.

The following corollary is also immediate.
Corollary 4.19. Suppose that R is a domain with quotisnt field K and that \bar{R}, the integral closure of R in K, is a Prüfer domain. Then R and each domain integral over R is a strong S-domain.

Proposition 4.20. Suppose that R is a Noetherian domt in, and that T is a domain integral over R. Then T and $T\left[X_{1}, \ldots, X_{n}\right]$ are strong \hat{S}-domains.

Proof. We need only show that T is a strong S-domain for $T[X]$ is integral over the Noetherian domain $R[X]$. If Q is any prime ideal of T and $P=Q \cap R$, then T / Q is integral over R / P and R / P is Noetherian. Hence it is enough to prove T is an S-domain. Now R Noetherian implies that the integral closure \bar{R} in the quotient field of R is a Krull domain by the theorem of Mori and Nagata [6]. Then Theorem 4.15 implies that T is an S-domain.

Corollary 4.21. Suppose that R is a Noetherian domain and that \bar{R} is the integral closure of R in the quotient field of R. Then \bar{R} is a strong S-domain.
Note that the ring \bar{R} in Corollary 4.21 is in fact a Krull domain [6] but Example 4.17 show that an arbitrary Krull domain may not be a strong S-domain.

Proposition 4.22. Suppose that R is a coherent domain and that T an integral extension of R. Then, if \bar{R}, the integral closure of R, is a finite R module, then T is an S-domain and consequently R is an S-domain.

Proof. Since R is coherent and $\bar{R}=R\left[a_{1}, \ldots, a_{n}\right]$ is a finite R-module, it follows by Corollary 1.4 [10] that R is coherent. Thus \bar{R} is an integrally closed coherent domain and hence a PVMD. It follows by Theorem 4.16 that T is an S-domain and by Proposition $4.6 \bar{R}$ is an S-domain.

The following example shows that a strong S-domain may not be coherent.
Example 4.23. Let V be a nontrivial valuation ring with quotient field L and V is of the form $V=K+M, K$ being a subfield of L and M the maximal ideal of V. Let R be a subring of K which is a Prüfer domain and k its quotient field. Also suppose that K / k is an algebraic extension but [$K: k$], the degree of K over k, is not finite, then $R_{1}=R+M$ cannot be coherent. (Or else we may suppose that M is a nonfinitely generated ideal of R_{1}, then also R_{1} is not coherent.) We shall prove in the next section that R_{1} is a strong S-ring.

5. Strong S-rings and $D+M$ construction [9]

Let V be a nontrivial valuation ring with quotient field L, and assume that V is of the form $K+M$, where K is a field and M is the maximal ideal of V. Let R be a domain that is a proper subring of K, and let $R_{1}=R+M$. Also suppose that k is the quotient field of R.

Theorem 5.1. R_{1} is a strong S-ring if and only if R is a strong S-ring and K / k is an algebraic extension of k.

Proof. Let R_{1} be a strong S-domain. Since $R \cong R_{1} / M, R$ is a strong S-ring for homomorphic images of strong S-rings are themselves strong S-rings. By Theorem 5.4 in [9], $\operatorname{dim} R_{1}[X]=\operatorname{dim} R[X]+\operatorname{din}_{1} V+\inf (d, 1)$ where d denotes the transcendence degree of K / k. But R_{1} and R are both strong S-rings, it follows that

$$
\operatorname{dim} R_{1}[X]=\operatorname{dim} R_{1}+1 \quad \text { and } \quad \operatorname{dim} R[X]=\operatorname{dim} R+1 .
$$

Hence $\operatorname{dim} R_{1}+1=\operatorname{dim} R+1+\operatorname{dim} V+\inf (d, 1)$, but $\operatorname{dim} R_{1}=\operatorname{dim} R=\operatorname{dim} V$ by the Theorem 2.1 [9]. So $\operatorname{dim} R_{1}+1=\operatorname{dim} R+1+\inf (d, 1)$. This implies that $\inf (d, 1)=0$ and therefore $d=0$. Therefore K / k is algebraic.

Conversely, suppose R is a strong S-ring and K / k is an algebraic extension. Let $Q_{1} \subset Q_{2}$ be adjacent primes of R_{1}. Then three different cases may arise.
Case 1. If $M \subseteq Q_{1}, Q_{2}$ then $Q_{i}=P_{i}+M$, where P_{i} are prime ideals of R. Clearly $P_{1} \subset P_{2}$ are adjacent primes of R, for if $P_{1} \subseteq P \subseteq P_{2}$, then $Q=P+M$ is a prime ideal
of R_{1} and $Q_{1} \subseteq Q \subseteq Q_{2}$. But then $Q_{1} \subset Q_{2}$ are adjacent primes of R_{1}, either $Q_{1}=Q$ or $Q_{2}=Q$; consequently $P=P_{1}$ or $P=P_{2}$. Now R is a strong S-ring sc that $P_{1}[X] \subset P_{2}[X]$ are adjacent primes of $R_{1}[X]$ because $Q_{i}[X] \cap R[X]=P_{i}[X]$.
Case 2. If $Q_{1} \subseteq M$ and $M \subseteq Q_{2}$, then as $Q_{1} \subset Q_{2}$ is a pair of adjacent primes of R_{1} either $Q_{1}=M$ or $Q_{2}=M$. In either case the argument in case 1 completes the proof. Case 3. If Q_{1}, Q_{2} are both contained in M, then they are both prime ideals of V, but V is a valuation ring and hence a strong S-ring. Therefore $Q_{1}[X] \subset Q_{2}[X]$ are adjacent primes.

Theorem 5.2. Let R be a domain with quotient field K and $R_{1}=R+X K[X]$. Then R_{1} is a strong S-ring if and only if R is a strong S-ring.

Proof. Let R_{1} be a strong S-ring. Then, as $R_{1 / X K \mid X]}=R$ it follows that R is a strong S-ring.

Conversely, let R be a strong S-ring and $Q_{1} \subset Q_{2}$ be adjacent primes of R_{1}. We consider the following two cases:
Case 1. If Q_{1} and Q_{2} are not both principal, then $Q_{i}=P_{i}+X K[X]$, where P_{i} are prime ideals of R. Clearly $P_{1} \subset P_{2}$ is a pair of adjacent primes of R. But R is a strong S-ring, so $P_{1}[Y] \subset P_{2}[Y]$ are adjacent primes in $R[Y]$. As $Q_{i}[Y] \cap R[Y]=$ $P_{i}[Y], Q_{1}[Y] \subset Q_{2}[Y]$ are adjacent primes in $R_{1}[Y]$.
Case 2. If Q_{i} is not a principal ideal but Q_{2} is a principal ideal then Q_{2} is a height 1 maximal ideal of R_{1} such that $Q_{2} \cap R=(0)$, hence $\left.Q_{1} \cap R=0\right)$ forcing $Q_{1}=(0)$. If $Q_{2}=f(x) R_{1}$, where $f(x)$ is irreducible in $K[X]$ and $f(0)=1$, then $Q_{2}=f(x) R_{1}=$ $Q_{2} K[X] \cap R_{1}$ and Q_{2} is a height 1 prime ideal of $K[X]$. Fow $K[X]$ is a strong S-ring, so that $Q_{2}[Y]$ must be of height 1 hence $(0) \subset Q_{2}[Y$; are adjacent primes.

We now examine the behaviour of the strong S-property in two other constructions, which are similar to the previous ' $R+M$ ' construction. The details of these constructions are given in [8] and [12].

Let L be a field and K a subfield of L and $\left\{V_{i}\right\}_{i=1}^{n}$ a finite collection of nontrivial valuation rings of L such that (i) $V_{i} \not \subset V_{i}$ for $i \neq j$; and (ii) each V_{i} is of the form $K+M_{i}, M_{i}$ the maximal ideal of V_{i}. Le, D_{i} be subrings of K with quotient fields k_{1} and set $J_{l}=D_{i}+M_{i}, J=\bigcap_{i, 1}^{n} J_{i}$ and $V=\bigcap_{1-1}^{n} V_{i}$. If $N_{i}=V \cap M_{i}$, then $H_{i}=M_{i} \cap J$ and $M=\bigcap_{i}^{\prime \prime}, H_{i}$ and then

$$
M=\bigcap_{i}^{n}\left(J \cap M_{i}\right)=J \cap\left(\bigcap_{i}^{n} M_{i}\right)=\bigcap_{i=1}^{n} M_{i}
$$

Also $M=\bigcap_{1,1}^{\prime} N_{1}$. Denote by C_{1} the set of all primes that are contained properly in some H_{i} and C_{2} the set of all primes of J that contain some H_{i}.

Theorem 5.3. Jis a strong S-ring if and only if each D_{i} is a strong S-ring, and K / k_{i} is an algebraic extension of k_{1} for each i.

Proof. Suppose first that J is a strong S-ring. To prove that each D_{i} is a strong S-ring, we first note that by Theorem 4.10 of [1] $J_{i} / M_{i}=D_{i}=J / H_{i}$. Moreover, J_{i} is a quotient ring of J. Now since J is a strong S-ring, it follows J_{i} is a strong S-ring. But then D_{i} is a homomorphic image of J_{i}, hence D_{i} is a strong S-ring and by Theorem 4.1 $\mathrm{K} / \boldsymbol{k}_{i}$ is a algebraic over \boldsymbol{k}_{i}.

Conversely, let D_{i} be a strong S-ring and K / k_{i} be algebraic over k_{i}, then by Theorem $5.1 J_{i}$ is a strong S-ring for each i. Moreover, for each maximal ideal M of J, M contains a unique H_{i} and there is a prime ideal P_{i} of J_{i} such that $P_{i} \cap J=M$. Moreover, each J_{i} is a quotient ring of J and $J_{M}=\left(J_{i}\right)_{P_{i}}$. Thus, J_{M} is a strong S-domain for each maximal ideal M of J and by Proposition 2.3, J is a strong S-domain.

Remark 5.4. Observe that in [3] Example 3 shows that if $D[X]$ is a strong S-ring, $(D+M)[X]$ need not be a strong s-ring.

Let V_{i} be independent valuation domains with quotient field L and K_{i} be the residue field of V_{i} for all $i, 1 \leq i \leq n$. Let K be embedded in $\sum_{i=1}^{n} K_{i}$ via the diagonal map and D a subring of K. Set $J_{i}=D+M_{i}, J=\bigcap_{i=1}^{n} J_{i}, V=\bigcap_{i=1}^{n} V_{i}$. Then

$$
J=\bigcap_{i=1}^{n} J_{i}=D+\bigcap_{i=1}^{n} M_{i}
$$

is a domain with quotient field L. Assume k is quotient field of D. Then we have:

Theorem 5.5. J is a strong S-domain if and only if D is a strong S-domain and K / k is algebraic.

Proof. Let D be a strong S-ring and K / k an algebraic extension. Suppose $P_{1} \subset P_{2}$ are adjacent primes of J. Now each prime ideal of J compares with $I=\bigcap_{i=1}^{n} M_{i}$ [12]. Once again three cases arise.
Case 1. If $I \subseteq P_{1} \subset P_{2}$, then $I=\bigcap M_{i} \subseteq P_{1}$ implies there exists an i such that $M_{i} \subseteq P_{1}$. Therefore $M_{i} \subseteq P_{1} \subset P_{2}$ and there exist prime ideals Q_{1} and Q_{2} of D such that $P_{1}=Q_{1}+I, P_{2}=Q_{2}+I$. Since $P_{1} \subset P_{2}$ are adjacent primes, $Q_{1} \subset Q_{2}$ are also adjacent primes of D, it then follows for each fixed i that $Q+M_{i} \subset Q_{2}+M_{i}$ are adjacent primes in J_{i}. But $Q_{j}+M_{i} \subseteq P_{j}$ as $M_{i} \subset P_{j}, j=1,2$, and $P_{j}=Q_{j}+I \subseteq Q_{j}+M_{i}$. Therefore $P_{j}=Q_{j}+M_{i}$. Now J_{i} is a strong S-ring implies $\left(Q_{1}+M_{i}\right)[X] \subset$ $\left(Q_{2}+M_{i}\right)[X]$ are adjacent primes of $J_{i}[X]$. As $\left(Q_{j}+M_{i}\right)[X]=P_{j}[X]$ therefore $P_{i}[X] \subset P_{2}[X]$ are adjacent primes of $J[X]$.
Case 2. If $P \subseteq I \subseteq P_{2}$, then $I \subseteq P_{2}$ implies there exists an integer i such that $M_{1} \subseteq P_{2}$. Therefore $P_{1} \subseteq M_{i} \subseteq P_{2}$, it now follows that $P_{1} \subseteq M_{i} \cap\left(\bigcap_{k \neq 1} J_{k}\right) \subseteq P_{2}$. But $P_{1} \subset P$, are adjacent primes of J, therefore either

$$
P_{1}=M_{i} \cap\left(\bigcap_{k \neq:} J_{k}\right) \quad \text { or } \quad P_{2}=M_{i} \cap\left(\bigcap_{k \neq i} J_{k}\right)
$$

If $P_{1}=M_{i} \cap\left(\bigcap_{k \neq i} J_{k}\right)$, then as $I \subseteq M_{i} \cap\left(\bigcap_{k \neq i} J_{k}\right), \dot{I}=P_{1}$. Hence $P_{1}=M_{i}$. If $P_{2}=M_{i} \cap\left(\bigcap_{k \neq i} J_{k}\right)$, then as $M_{i} \subset P_{2}=M_{i} \cap\left(\bigcap_{k \neq i} J_{k}\right) \subset M_{i}, P_{2}=M_{i}$. Thus either $P_{1}=M_{i}$ or $P_{2}=M_{i}$ and case 1 occurs. Therefore $P_{:}[X] \subset P_{2}[X]$ are adjacent primes.
Case 3: If $P_{1} \subset P_{2} \subseteq I=\bigcap_{i=1}^{n} M_{i}$, then P_{1} and P_{2} are ideals in each J_{i} and prime ideals of V_{i} for each i. Because if $y \in V_{i}$ and $x \in P_{j}$ choose $m_{i} \in M_{i} \backslash P_{j}$, then $x y \in J_{i}$ and $m_{i} \in J_{i}$ implies $x y m_{i}=x\left(y m_{i}\right) \in P_{j}$ but $m_{i} \notin P_{j}$ implies $x y \in P_{j}$ thus P_{i} and P_{2} are prime ideals of V_{i}. But then V_{i} is a valuation ring anc hence a strong S-ring. Thus $P_{1}[X] \subset P_{2}[X]$ are adjacent primes of $J[X]$.

Conversely, let J be a strong S-ring, then since D is homomorphic image of J, D is a strong S-ring. Now by invoking Theorem 5.1 for each fixed i, J_{i} is a strong S-ring and K / k is an algebraic extension of k.

References

[1] J. Arnold and R. Gilmer, The dimension sequences of a commutative ring, Amer. J. Math. 96 (1974) 385-408.
[2] J. Brewer. Thr ideal transform and overrings of integral domain, Math. Z. 107 (1968) 301-306.
[3] J. Brewer, P.R. Montgomery, E.A. Rutter and W.J. Heinzer, Krull dimensions of polynomial Rings, Lecture Notes in Math. No. 311 (Springer, Berlin-New York, 1972).
[4] D. Costa, J.L. Mott and M. Zafrullah, The $D+X D_{S}[X]$ construction, J. Algebra 53 (1976) 423-429.
[5] D. Dobbs. Divided rings and going down, Pacific J. Math. 67(2) (19\%6) 353-363.
[6] R. Fossum, The Divisor Class Group of a K ull Domain (Springer, New York, 1973).
[7] R. Gilmer, Multiplicative Ideal Theory (Marcel Bekker, New York, 172).
[8] R. Gilmer. Two constructions of Prüfer domains, J. Reine Angew, A ath. 239 (1970) 153-162.
[9] R. Gilmer and E. Bastida, Overrings and divisorial ideals of rings of fcrm $D+M$, Michigan Math. J. 20 (1973) 79-95.
[10] M. Harris, Some results on coherent rings, Proc. Amer. Math. Soc. i8 (1967) 749-753.
[11] 1. Kaplansky, Commutative Rings (Allyn and Bacon, Boston, MA, 1974).
[12] J.L. Mott and M. Schexnayder, Exact sequence of semivalue groups, J. Reine Angew. Math. 283/284 (1976) 388-401.
[13] J.L. Mott and M. Zafrullah, On Prüfer v-multiplication domains, Manuscripta Math. 35 (1981) 1-26.
[14] M. Nagata, Finitely generated rings over a valuation ring, J. Math. Kyol o Univ 5(2) (1966) 163-169.
[15] L. J. Ratliff, Going between rings and contractions of saturated chains of primes, Rocky Mountain J. Math. 7(4) (1977) 777-787.
[16] F. Richman. Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965) 794-799.
[17] A. Seidenberg. On dimension theory of rings, Pacific J. Math. 3 (1953) 513-522.

