
Journal of Pure and Applied Algebra 28 (1983) 249-264 

North-Holland 
249 

STRONG S-DOMAINS 

S. MALIK and J.L. MQTT 
Department of Mathematics, Fiorida State University, Talahassee, FL 32306, USA 

Communicated by H. Bass 

Received 8 November 1981 

S-domains and strong S-rings are studied extensively with special emphasis on integral and 

polynomial ring extensions. The main theorem of this paper is that for a Prtifer domain R, the 

polynomial ring R[X, , . . . , X,] in finitely many indeterminates is a strong S-domain. We also 
prove that any Prtifer o-multiplication domain is an S-domain. 

1. Introduction and terminology 

All rings under consideration are commutative rings with unity. The concepts of 
S-domain and strong S-domain are crucial ones and were introduced by Kaplansky 
[ 11, p. 261. Let us recall their definitions. An integral domain R is an S-domain if 
for each prime ideal P of R of height one the extension PR[X] to the polynomial 
ring in one variable is also of height one. Call a ring R a strong S-ring if the residue 
class ring R/P is an S-domain for each prime P of R. 

‘The present paper deals with several elementary properties of strong S-domains 
and the behaviour of the strong S-property under integral and polynomial ring 
extensions. 

In Section 2 we first prove that the strong S-property is a local property. Then 
using this result and Theorem 68 of [ 1 l] we see immediately that a Priifer domain 
is a strong S-domain. One reason that Kaplansky introduced the notion of strong 
S-domain was to treat the classes of Noetherian domains and Priifer domains in a 
unified manner - for if R is either a Noetherian or a Prufer domain then R is a 
strong S-domain. Moreover, if R is in either of the two classes of domains, then the 
following dimension formula holds: dim RIXl, . . . , X,,,] = n + dim R. Kaplansky 
observed that for n = 1 and for R a strong S-domain then dim R[XJ = 1 + dim R. 

Had the strong S-property been stable under polynomial ring extensions, the above 
dimension formula could have been obtained by induction for all strong S-domains. 
However, the strong S-property is not stable, in general, and thus by itself is not 
the cause for the dimension formula. Nevertheless, .we show in Theorem 3.5 that 
if R is a Prufer domain., then R[X*, X2, . . . , X,] is a strong S-domain. Hilbert’s 

asis Theorem and connected results give the corresponding result for Noetherian 
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domains. Thus we define a ring R to satisfy the stably strong S-property, if for each 
it, R[X,, X,, . . . , X,] is a strong S-ring. Thus, Noetherian rings and Prufer domains 
are better unified under the concept of stably strong S-property, and the stably 
strong S-property does in fact imply the above dilmension formula. 

Using a theorem of Nagata (14) we also prove thlat if R is a Priifer domain, then 
for any prime ideal P of RIX1, X2, . . . , Xn] of finite height, ht P= little rank P and 

R[Xt, X2, l =n . X,] satisfies the saturated chain condition [l 1, p. 991. 
In view of above conclusions we then ask what properties common to Noetherian 

domains and Prufer domains cause the stability of strong S-property under 
polynomial ring extensions. One property that these domains have in common is 
that their integral closures are Prufer o-multiplicdEion domains (Priifer domains are 
already integrally closed and the integral closure of a Noetherian domain is a Krull 
domain). Then the natural question arises: Could the stably strong S-property be 
caused by the property that the integral closure of a domain R is a Priifer 
~-multiplication domain ? The answer is no in general for we give an example of 
Kruii domain that is not a strong S-domain. Nevertheless we show in Theorem 4.16 
that such a domain at least must be an S-domain. We then use this theorem to con- 
clude in Proposition 4.19 and 4.21 that if R is either Noetherian or Prufer then the 
integral closure of R is a stably strong S-domain. Thus the two classes are further 
unified by this observation. 

The ultimate effect of this last observation is to focus the study of stabty strong 
S-property onto the class of Krull domains, a subject we leave for future research. 

In Section 5 we study the ‘D + M’ construction [9] and other related constructions 
that inherit the strong S-property from D. 

2,, Elementary properties 

We now give some elementary properties of S-domain and strong S-rings. Note 
that it is immediate that the direct sum of any finite nltimber of rings is a strong 
S-ring if and only if each summand is. 

Proposition 2.l. A domain R is an S-domhn if and on@ if RM is an S-domain for 
each maximal ideal M of R. 

roof. Lei R be an S-domain. For a’iy maximal ideal M of R, let p= PRM be a 
eight 1 prime of /?%I. Clearly P is a height 1 prime ideal of R. But then R is an 

enee PR[X] = P* is a height 1 prime of R[X]. Now 

P(RWIl, \.* =pR,[xl= P*&,[X] =(PR,)R,[X] =PeRM[x], 

of R.,,[X] and Hdu is an S-domain. 
main for each maximal ideal M of R and let P be 

ill a maximal ideal M. Then PRAf is a height II 



Strong S-domains 251 

prime of R,. But then RM is an S-domain, hence FRM[X] = (PR&&[X] = 
PRM[X] is a height 1 prime of R&X] and by taking intersections with R[X] we 
have PR[X] is a height 1 prime of R[X] and hence by definition R is an S-domain. 

Corollary 2.2. The following are equivalent in a domain R: 
(i) R is an S-domain. 

(ii) Rs is an S-domain for each multiplicative system S of R. 
(iii) RIP is an S-domain for each prime ideal P of R. 
(iv) RM is an S-domain for each maximal ideal M of R. 

Proof. We prove (i) implies (ii), (ii) implies (iii), (iii) implies (iv) and (iv) implies (i). 
So let Ps - PRs be a prime ideal of Rs of height 1 then F is a prime ideal of R of 
height 1 such that PfU = 0. Since R is an S-domain it follows PR[X] is a height 1 
prime ideal of R[X]. Therefore Ps Rs [X] = (PR[X])s is also a prime ideal of height 
1 in (R[X]), = Rs[X]. So Rs is an S-domain proving thereby (i) implies (ii). 

To prove (ii) implies (iii) take S= R \ P where P is any prime ideal of R. 
Clearly (iii) implies (iv) since each maximal ideal is a prime ideal and (iv) implies 

(i) follows from Proposition 2.1. 

Proposition 2.3. A ring R is a strong S-ring if and only if RM is a strong S-ring for 
each maximal ideal M of R. 

Proof. Since R,/PR M = (R/P)fl where m= (R \M) + P/P, P being a prime ideal 
of R contained in A!, it is enough to prove that R is an S-domain if and only if Rbg 
is an S-domain for each maximal ideal M of R but then Proposition 2.1 completes 
the proof. 

Corollary 2.4. The following are equivalent for any ring R: 
(i) R is a strong S-ring 

(ii) Rs is a strong S-ring for each multiplicative system S qf R 
(iii) RP is a strong S-ring for each prime P of R 
(iv) Rti is a strong S-ring for each maximal ideal M of R. 

In view of above corollary and Theorem 68 [ 1 l] the following proposition is 
immediate. 

Proposition 2.5. A Prtifer domain is a strong S-ring. 

roposition 2.6. Let R be a domain, then R is a strong S-ring if and only if each 
jkt overring of R is strong S-ring. 

Proof. Let T be a flat overring of R and suppose that R is a strong S-ring. For each 
maximal ideal M of T, TM = M,-, R [ 161. Since R is a strong S-ring, R.4,,-,R is also 
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a strong S-ring so &.., is a strong S-ring. But then by Proposition 2.3 T is a strong 
S-ring. 

The converse follows by Corollary 2.4. 

Proposition 2.7. Let R be a domain. Suppose R is a strong S-ring, and R, , . . . , R, 
are quasi-semi-local flat overrings of R contained in the quotient field of R; then 
R ’ = n:=, Ri is a strong S-ring. 

Proof. Since each Ri is a flat overring of R, by Proposition 2.6 Ri is a strong S- 
ring. Also R c R’c Ri c K and since Ri are flat overrings of R, it follows that Ri are 
flat overrings of R’. Now every nonunit of R’ is a nonunit in some Ri. Thus the set 
of nonunits of R’ is exactly the union of the finite set of contracted maximal ideals 
of R, for 1 I is n. If M is any maximal ideal of R and x EM then XE Mi for some 
maximal ideal Mi of some Rim Hence xEMinR’ SO MGU(M,,~R’); but Ri are 
semi-local, the union U (Mik n R’) is a finite union so that M c A$ n R’ for some 
iA. But then M was maximal so M= Mikn R ‘, showing that each maximal ideal of 
R’ is a contraction of some maximal ideal of Ri. Let A4 be any maximal ideal of 
R. If M = M, fJ R’, Mi being a maximal ideal of Ri, then RiM, = RhinR = Rh as Ri is 
a flat overring of R’. Therefore, as each Ri is a strong S-ring, RiM, is a strong 
S-ring and R,;, is a strong S-ring. The conclusion now is immediate from Pro- 
position 2.3. 

The proofs of Proposition 2.8 and Corollary 2.9 arc easy applications of Proposi- 
tion 1.1 of [2] and Propositions 2.3 and 2.7. 

Proposition 2.8. If R is a non-quasi-local domain, then R is a strong S-ring if and 
on& if T(s), the integral transform of(x) for each nonunit x of R, is a strong S-ring. 

Corollary 2.9. Let R be a domain and A be a finitely generated ideal of R. Then 
if R is a strong S-ring the integral transform T(A) is also a strong S-ring. 

3. Strong S-rings and polynomial extensions 

In this section we prove necessary and sufficient conditions for the polynomial 
ring R[& . . . , X,] to inherit the S-property or the strong S-property. In particular, 
me prove that if R is a Prufer domain, then R[X], . . . , X,,] is a strong S-domain. 

Theorem 3.1. Let R be an S-domain and X = (x,, X2, . . . , X,,) be a finite set of in- 
deterrninates over R. Then REX] is an S-domain if and only RP[X] is an S-domain 
for each prime ideal P of R. 

roof. Let R[X] be an S-domain, then Rp[X] =(R[X]),,, for each prime ideal P 
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of R is a quotient ring of R[X] , hence, is an S-domain. 
Conversely, let Rp[X] be an S-domain for each prime ideal P of R and Q be a 

height 1 prime of R[X]. If QfU? = P two cases arise according as P is nonzero or 
zero. Suppose first P+(O), then RIX]nxl z> R[X]R\P=RP[X]. As P[X] c Q and 
height of Q is 1, so P[X] = Q. Therefore R[X]Q = RIXIPlxl is a quotient ring of 
Rp[X] and hence an S-domain. Thus QR[X]o[ Y] = QR[X, YIQ is a prime ideal of 
R[X, YIQ of height 1. Consequently, Q[ Y] = QR[X, Y]@l?[X, Y] is a prime ideal 
of R[X, Y] of height 1 and R[X, Y] is an S-domain. If P=(O) then R,,[X] ==K[X], 
where K is a quotient field of R, is Noetherian and hence an S-domain. Also QK[X] 
is a prime ideal of K[X] of height 1. Thus QK[X, Y] is also of height 1 in K [X, Y]. 
It now follows that Q[Y] = Q[X, Y] n R[X, Y] is a height 1 prime of R[X, Y]. 

Theorem 3.2. Let R be a strong S-domain and X= {X,, X2, . . . , Xn} a finite set of 
indeterminafes over R. Then R[X] is a strong S-ring iff RpfA’] is a strong S-ring 
for each prime ideal P of R. 

Proof. If R[X] is a strong S-ring, then for each prime ideal P of R, 
Rp[X] = RIXIRiP is a quotient ring of R[X] and hence a strong S-ring. 

Conversely, suppose that RP[X] is a strong S-ring for each prime ideal P of R 
and Q1 f Q2 be a pair of adjacent primes of R[X]. Also let Qi f7 R = Pi for i = 1 and 
2; then Qz n (R \ Pz) = 0 and Qr R&X] C Q2 Rq[X] is a pair of adjacent primes of 
Rp2[X]. But RPZ[X] is a strong S-ring so that Qi R, [X][ U] c Q2Rq[X][ Y] is a 
pair of adjacent primes of R, [X][ Y]. Once again we obtain QI [ Y] C Q2 [ Y J are 
adjacent primes of R(X, Y]. Hence R[X] is a strong S-ring. 

Theorem 3.3. Subpose that R is an integral domain and X = (X, , Xz, . . . , X,, ) a 
finite set of indeterminates over R. Then R[X] is an S-domain if and only if 
RIX],Ixl is an S-domain for each maximal ideal M of R (that is, if and only if 

R(X) is an S-domain). 

Proof. Since RIXllurxl is a quotient ring of R[X], if R[X] is an S-domain, 
RIX]wxl is an S-domain. Conversely, let Q be a prime ideal of height 1 in R[X]. 
If Qn R = (0) then QK[X] is a height 1 prime of K[X], where K is the quotient field 
of R[X]. But K(.% ] is a Noetherian domain, hence an S-domain. Thus QK[X][ Y] 
is a height 1 prime ideal of K[X][ Y]. But then QK[X][ Y]n R[X, Y] = Q[ Y] is a 
height 1 prime of R[X, Y]. If Qn R = P, then PC M for some maximal ideal M of 
R, NOW since Q is a height 1 prime Q= P[X] and PR[X] g M[X], it follows that 

QRWIM~X~ is a height 1 prime ideal of RIXlnqxl which is an S-domain, SO 

QR[X]& Y] is a height 1 prime of RIXIM(xl [ i’]. But then QRIXIMjxl[ Y] f3 
R[X, Y] = Q[ Y] = Q[ Y] is also a height I prime of R[X, Y]. So R[X] is an S-domain. 

The last conclusion follows immediately from the fact that the maximai ideal ~5 
R(X) are of the form M(X) when M is a maximal ideal of P and also that 

R[Xl.kqX] = wuM(x,. 
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Corollary 3.4. Let R be a Prtifer domain, then R[X] is an S-domain. 

Proof. Since R is a Priifer domain, R(X) is a Priifer domain by Proposition 33.4 

of [7]. Now for each maximal ideal M of R (R(X),wtx, = RIXjiclIxl so RIXlwxl is 

a strong S-domain and hence an S-domain, but then by Theorem 3.3 the conclusion 

follows. 

One sees readily that R(X) is a strong S-domain if and only if R[X]wXI is a 
strong S-domain for each maximal ideal A4 of R. But then the following question 

comes to mind: Is R[X] a stron.g S-domain if and only if R(X) is a strong S-domain? 

It is very clear that if R[X] is a strong S-ring, R(X) is a strong S-ring but it is 
in other direction that deep waters run. For any pair Q1 C Qz of adjacent primes of 

R[X] we are unable to prove that Q1 [Y] CQ1 [Y] are adjacent primes of R[X, Y] 
without any condition on R. In fact we show that the condition that R is a Priifer 

domain is sufficient. 

Theorem 3.5. Let R be a Priifer domain and let X = (X1, . . . , Xn ) be a finite set of 
iruictcrtninates over R. Then R[X] is a strong S-domain. 

Psocrf. I-et Q, c Q2 be a adjacent primes in R[X] and let Pi = QJ7 R. Let 1(7 = R/P,, 

&=P,/P,, S=R\&. T=R\P, and V=RT/P,RT. 

Then (R[X)), = (&[X] - V[X]. 

Now V is a valuation ring since R is a Priifer domain. But, more than that, we 

il Aim thal dim 1’5 1. This follows since Q2/Q1 n R = P, and the pair 
(A’ ;P,, R[X’] ‘Q, ) has the going down property because R/P, is a Priifer domain. 

Tlw-cforc. ht(P, P,) 5 1 since ht(Q2/Q,) = 1. 

?b.t, if ‘cl’t’ know that C’[X] is a strong S-domain, the proof of the theorem would 
bc complete. For the prime ideals Qi= Qj/Pl[X] in R[X]/P,[X] =R[X] lift to 

adjacent prime ideals in V[X] since Q2n T= 0. But VjX] a strong S-domain im- 
piio that Q, I’[X, Y] c @ V[X, Y] are adjacent primes in V[X, Y]. But then it is 

immediate that Q, R[X, Y] c Q2 R[X, Y] must be adjacent primes of R[X, Y]. 

Therefore, let us show that if V is a valuation ring of rank 1 (that is, dim V= 1) 

then V(X] i\ a strong S-domain (note the O-dimensional case is obvious). 

I t’t QI CQ2 be adjacent primes of C’[X] and P, = Qln V. We may assume 

Qi f (I)) for otherwise ht Q2 = 1 and, since V[X] is an S-domain by Corollary 2.13, 

hr Q:f 1-1 = 1 in I ‘[A’, I’]. Moreover, we may assume P2 f (0) since otherwise QI and 

c-): would lift to adjacent primes in the strong S-domain K[X] and, in turn, 

C,! h [X; I’] and Q:.K[X, Y] are adjacent primes in K[X, Y]. But then Q, V[X, Y] 

and (c),’ I ‘[X, 1’1 must bc adjacent primes in C’[X, Y]. 

Thus, we have reduced to provmg the theorem in the case that V is valuation ring 
01 cfimcn\ion one, QI C Qz are adjacent primes of V[X] such that Q1 n V = (0) and 

(,): r\ 1’1 .U, the maximal ideal of 1’. 

~wlqwn~~ of Nagata’s theorem [l-1] is that all saturated chains of prime 
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ideals of V[X, Y] between Q2[ Y] and (0) have the same length. Thus, Q, [Y] and 
QJ Y] will be adjacent primes if and only if ht Q2 [ Y] = 1 + ht Q, [Y]. Let us use 
Nagata’s theorem to determine each height: 

ht QJ Y] = ht M+ tr deg, V[X, Y] - tr deg,,, V[X, Y]/&f Y] 

= 1 +(n+ l)-(trdegV,M V[X]/Q2+ 1) 

= n c 1 - tr degV,,+,, V[X]/Q*, 

ht Q, [ Y] = tr degv V[X, Y] - tr degV V[X, Y]/Q, [Y] 

= n - tr degV VIX]/Q1. 

Thus, we see that Q, [ Y] and Qz[ Y] are adjacent primes if and only if 

tr deg,- V[X]/Q, = tr degrpIM V[X]/Q2. 

To prove this equality we apply Nagata’s theorem again. Let A = V[X]/Q, and 
P= Q2/Q,. Since Q1 n V = (0), V can be embedded in A and Pn V= A4. Since Q, 
and Qz are adjacent primes of V[X], 

htP=l 

= ht N+ tr deg,A - tr degLjs,jIA/P 

= 1 + tr degI: V[X]/Q, - tr degbV,,,,,, V[X]/Qz. 

In other words, the two transcendence degrees are equal, Q, [Y] and Q2[ Y) are 
adjacent primes in V[X, Y], and the proof is complete. 

Corollary 3.6. Suppose that R is a Prtifer domain. Then any finitely generated ex- 
tension R [a,, . . . , a,] is Q strong S-ring. 

Proof. The ring R[al, . . . , a,)] is a homomorphic image of RIXI, . . . , X,,]. 

Definition 3.7. The little rank of a prime ideal P of a ring R is the length of the 

shortest saturated chain descending from P to a minimal prime of R. 

Let us extend Nagata’s theorem [14] slightly. 

Theorem 3.8. Let R be a Prtifer domain and Q be a prime ideal of R[X,, . . . , X,,] 
qf.finite height, then little rank Q= ht Q. 

Proof. Let Qn R = P, then ht P is also finite, since 

ht Q= ht PIXI, . . . , X,,] + ht(Q/P A’,, . . . , X,,]) by ‘Fheorem 

. 
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Now to prove that little rank Q= ht Q it is enough to prove 

little rank QRp[Xl, . . . , X,,] = ht QRp[Xr, . . . , X,]. 

Hence we may assume R is a valuation 
theorem we get the desired conclusion. 

ring of finite rank. But now by Nagata’s 

rheorem 3.8 ail saturated chains of prime Corollary 3.9. Under the hypothesis of 
ideals of R[X,, . . . , X,,] descending from Q to (0) have the same length. 

Consequently, if R is Prufer domain in which each prime ideals has finite height, 
then RIX1, . . . , X,] satisfies the saturated chain condition, that is, if PC tJ are 
prime ideals of RIXI, . . . , X” 1, then all saturated chains of prime ideals between h’ 
and Q have the same length. 

Defin&ion 3.10. If R is a domain and k is a nonnegative integer such that for each 
valuation overring V of R dim VS k and there exists at least one valuation overring 
whose dimension is exactly equal to k, then we say that R has valuative dimension 
k and write dimb, R= k. If no such k exists, then we say that dim, R = 00. 

It is well known that dim R 5 dimV R. Moreover, if RIX1, . . . , X,,] is a strong 
S-ring for each positive integer n then dim R = dir+ R provided dim, R < 00. The 
converse in general is false for there exist domains R for which dim R = dimcf R 
but R is not a strong S-domain. We give the following example. 

Kuample 3.11. If R has finite dimension ‘rO and for each positive integer m, n,, 
denotes the dimensions of R(X1, . . . , X,], then the sequence (ni)& is called the 
dimension sequence of R and the sequence {dj}; 1, where di = ni - n-1 is called the 
difference sequence for lit. Denote by .Y the set of sequences s = { ni}Eo of non- 
negative integers such that the associated difference sequence { di}E 1 satisfies 
i sd,. +d,snO+ 1. For St,..., s, E /. si = {n~)},~?_O, sup{sl, . . . , s,) is defined to be 
the sequence s= {n,>,?,, where nj =sup{nj”, . . . . rzy)) for each j20. 

, it is proved that given a dimension sequence s and field K there is a domain 
quotient field K and dimension sequence s. A method to construct a semi- 
cal domain that ha:; s as its dimension sequence is also given. Following this 

it c: mnst ruct the sequences { 1,3, 4Y 5, . . . } and { 3,4,5,6, . . . > in Y. By Lemma 
4.7 and Proposition 4.8 ir: [l], there exist domains J, = Rr +M, and J2=Rz +M2 

re~pectivc dimension sequence ( I, 3,4,5, . . . > and { 3,4,5,6, . . . }. Set R = J, Cl J2 

in [I], J, and J2 are quotient rings of R and s = { 3, -0,5,6, . . . } 
nce of R. Here dim R = 3 and dim REX,, X2, X3] =6 so that 

ring of R and not a strong, S-ring, R cannot be 
y J, fails to be a strong S-ring is because 

~cr-e to be a strong S-ring dim J, [X, ] would have to be 2. 
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4. Strong S-rings and integral extensions 

Here we study various conditions on the domain R or on its integral extension 
T to study ascent and descent of the strong S-property. The proof of our next 
lemma is an easy application of the incomparability property of integral extensions 
and is therefore omitted. 

Lemma 4.1. Let T be an integral extension of a domain R and PI c Pz be a pair elf 
adjacent primes of R. If Qi is a prime ideal of T such t.‘2at Qi CI R = Pi, i = 1 and 2, 
then QI c Q2 is a pair of adjacent primes of T. 

Theorem 4.2. Let T be an integral extension of a domain R. Suppose R is a 
l-dimensional strong S-ring. Then T is a strong S-ring. 

Proof. Since T is a integral over R, dim T= dim R = 1, therefore it is enough to 
prove T is an S-domain. Let Q be a height 1 prime of T and P = Q n R, then P# (C) 
and ht Pr 1. But R is l-dimensional so ht P must be exactly 1. Now R is an 
S-domain hence PR[X] is a height 1 prime of R[X]. Also T integral over R implies 
T[X] is integral over REX]. Moreover, QT[X] lies over PR[X] so that ht QT[X] 5; 1. 

But 15 ht QT[X] 5 2 always holds so that ht QT[X] = 1; consequently, T is an 
S-domain. 

Corollary 4.3. Let R be a strong S-domain, P a prime ideal of R of depth I 1. [f 
T is an integral extension of R and Q is a prime ideal of T such that Qn R = P, their 
T/Q is a strong S-domain. 

Proof. R/P is a I-dimemsional strong S-domain and T/Q is an integral extension 
of R/P, therefore by Theorem 4.2 T/Q is a strong S-ring. 

Corollary 4.4. Let R be a strong S-domain of dimension 2 and P be a prime ided 

of height 1. If T is an integral extension of R and Q is a prime ideal of T such that 
Q n R = P, then T/Q is a strong S-ring. 

Proof. Since R/P is a domain of dimension 9~ and T/Q is integral over R/P, 
Corollary 4.3 gives T/Q is a strong S-ring. 

Theorem 4.5. Let R be a 2-dimensional integral domain and Tan integral extension 
of R such that T is an S-domain. Then if R is a strong S-ring, T is a strong S-ring. 

roof. Let QI C Qz be a pair of adjacent primes of T and Qi f7 R = Pi, i = 1,2. 
Without loss of generality we may assume Q1 # (0), since if QI = (0), then Qz is +I 
height 1 prime of T and by hypothesis T is an S-domain, therefore (0) c Qz [X] arlt 
adjacent primes in T[X]. Now ht P;r ht Q; and O# Q1 C Q2 are adjacent primes,, 
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hence ht Q1 = i for i = 1,2. But then ht Pz( 2 since dim R = 2, it follows ht P2 = 2. 
As P, c&. ht PI has to be 1. Thus PI C Pz are adjacent primes of R. But R is a 
strong S-ring implies P, [A’] c PJX] are adjacent primes of R[X]. Since Qr [X] Cl 
R(X) G Pi[X], i= 1,2, by Lemma 4.1 Q1 [X] c Q#] are adjacent primes of T[X]. 
Thus 7’ is a strong S-ring. 

Theorem 4.6. Let R be a domain and T an integral extension of R. Then if T is G! 

strong S-domain, R is a strong S-domain. 

Proof. By passage to homorphic images, it is enough to prove the following: 
If T is integral over R and T is an S-domain, then R is an S-domain. 
So, let P be a prime ideal of R of height 1. Then by Theorem 38 [lo], 

1 L ht P[X] 5 2. If ht P[X] < ,T, then ht P[XJ = 1 and we are through. If ht P[X] = 2: 
then, as T[X] is integral oter R[X] is integral over R[X], there exists a prime ideai 
Q* of T[X] such that ht Q*=2 and QWR[X]:9[X]. Let Q=Q*nT in T then 
Q*(O)and ht QI 1, Q*flR=Q*flR[X]flR=P[X]nR=P, QflR=P, and P#(O). 
It now follows that ht Q= 1. As T is an S-domain, ht. Q[X] is 1. Hence Q[X] c Q*. 
But then P[X] c Q[X]nR[X] c Q*nR[X]. Therefore P[X] c Q[X]nR[X] c P[X] 
implies Q[X]n R[X] = P[X]. Thus Q[X] and Q* both lie over P[X] which is not 
possible by INC. Thus R is an S-domain. 

C’orollar~ 4.1. If the integral closure I? of a domain R in its quotient field K is a 
strong S-domain, then R is a strong S-domain. 

C’orollar, 4.8. Let R he a I-dimensional strong S-domain and suppose that 
x-- {A’~,..., A’,, ) is a firlite set of indetenninates over R. Then R[X] is a strong 
S-donwin. 

Proof. Since R is a 1 -dimensional strong S-domain, dim R[X,] = 2 so that the 
integral closure of R is a Prufer domain by Theorem 30.14 of [7]. Thus, 
R(& . . . , A’,,] is a strong S-domain by Theorem 3.5 and Theorem 4.6. 

'Theorem 4.9. Let R be an S-domain and T an integral e.ytgension of R. Then, if 
q 7-t sori$* the GD-properr_v [S], T is aIso an S-domain. 

Proof. Suppose Q is a height 1 prime of T and Qn R = P then ht P= 1 by GD and 

I-0 Sow R is an S-domain, thus ht P[X] in R[X] is also 1. As T[X] is integral over 
R d Q[X] Ti RfX] == P[X], ht Q[X] 5 1. As Q[X] #O, ht Q[X] = 1. Thus T is an 
.I’- 

. iq m integral&+ ckxcd S-domain and T is integral extension of 
S-dam tin. 
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Corollary 4.11. If R is an S-domain and T is a flat R-module such that T is integral 
over R, then T is also an S-domain. 

Proof. The GD-property holds. 

Proposition 4.12. If R is a GD-strong S-domain and T is integral over R then T is 
a strong S-ring. 

Proof. Let Q be any prime ideal of T and Qn R = P, then T/Q is integral over R/P 
and R/P is GD [5]. Therefore T/Q is an S-domain by Theorem 4.6. Since Q was 
any prime ideal of T it follows T is a strong S-ring. 

Theorem 4.13. Let R be a strong S-domain, T an integral extension of R such that 
(R, T) satisfy the G&property 1151. Then T is a strong S-ring. 

Proof. Let P*c Q* be a pair of adjacent primes of T and P*n R = P, Q*f7 R = Q. 
Then by definition of the GB-property PC Q is a pair of adjacent primes of R. But 
R is a strong S-ring so that P[X] C Q[X] is a pair of adjacent primes of R[X]. hence 
by Lemma 4.1 P*[X] C Q*[X] are adjacent primes in T[X]. Thus T is a strong 
S-ring. 

Corollary 4.14. Suppose that R is a strong S-domain. Moreover, suppose R is a 
GB-ring. Then I? is a strong S-ring, where R denotes the integral closure of R. 

Theorem 4.15. Let R be a domain with quotient field K and R its integral closure 
in K. If R is a PVMD and T any integral extension of R then T is an S-domain. 

Proof. Let Q be a height 1 prime of T. To prove Q[X] is a height 1 prime of T[X], 
we use the following result of Seidenberg [ 171: QT[X] is a height 1 prime if each 
prime Q of 7; the integral closure of T in the quotient field L of T such that 
Q fI T= Q, is such that TQ is a valuation ring. So let Q be a prime ideal of T such 
that Qn T= Q. Since ht Q= 1, ht &= 1 also. Furthermore, ht(QnW) = 1, since the 
GD-property holds for (R, T). Thus &fW? is a t-ideal of R and /‘? is a PVMD. It 
follows that aR,i~n~) is a valuation ring of rank 1. If S= TE\~Q~R), then S in in- 
tegral closure of 17~~~~~ 8) in L and OS is a maximal ideal of S. Moreover, S is a 
Prufer domain being the integral closure of a valuation ring and therefore S0.s is a 
valuation ring of rank 1. But 

SQS = n?\@fmlQrR\(Q”ri, = ?2 
so that TQ is a valuation ring. Hence Q[X] is a height 1 prime of T[X] and T is ar: 
S-domain. 

emark 4.16. The proof of Theorem 4.15 only required R to be a P-domain in th : 

terminology of [ 131. 
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We have seen in Theorem 4.15 that if the integral closure of a domain R is a 
PMVD, then any integral extension of R is an S-domain, in particular R itself is an 
S-domain. In fact, if R were a PVMD to begin with and P a height 1 prime, then 
RP is a valuation ring of rank 1 and PRp[X] is also a height 1 prime of Rp[X] as 
RP is a strong S-domain so an S-domain. Hence PRp[X]nR[X] =PR[X] is also a 
height 1 prime in R[X]. Thus a PVMD is an S-domain. We show by an example 
that a PVMD may not be a strong S-ring. The construction of this example is due 
to G. Evans. 

Example 4.17. Let R be a domain which is not a strong S-ring. Consider T=Z/(p) 
or T== Z according as the characteristic of R is a nonzero prime integer p or zero. 
If {XJdER is the set of indeterminates over R, indexed by elements of R then con- 
sider T( ( Xd)de ,J = S. There is a homomorphism f : Sa R SO S/ker f = R. Now 
S is a PVMD (in fact a Krull domain), but its homomorphic image S/ker r is not 

a strong S-ring. Thus, S cannot be a strong S-ring. 

Proposition 4.18. Suppose that T is an integral domain integral over a Priifer 
domain R. Then T and T[X’, , . . . , X,] are strong S-domains. 

Proof. Let a be the integral closure of R in the quotient field of T. Then R is a 
Prufer domain integral over :r. The conclusion follows immediately from Theorems 
3.5 and 4.6. 

The following corollary is also immediate. 

Corollary 4.19. Suppose that R is a domain with quotient field K and that r7’, the 
irltegrui closure of R in K, is a Priifer domain. Then R and each domain integral 
ot’er R is a strong S-domain. 

Proposition 4.20. Suppose that R is a Noetherian domr,in, and that T is a domain 
integral over R. Then T and T[X, , . . . , X,,] are strong S-domains. 

Proof. We need only show that T is a strong S-domain for T[X] is integral over 
the Noetherian domain R[X]. If Q is any prime ideal of T and P= Qn R, then T/Q 
k integral over R/P and R/P is Noetherian. Hence it is enough to prove T is an 

S-domain. Now R Noetherian implies that the integral closure R in the quotient field 
R is a KI-L!II domain by the theorem of Mori and Nagata [6]. Then Theorem 4.15 

implies that T is an S-domain. 

C’orolIaw 4.21. Suppose that R is a Noetherian domain and that I? is the integral 
cYr~srrre of R in the quotient field of R. Then I? is a strong S-domain. 

Corollary 4.21 is in fact a Krull domain [6] but Example 

domain may not be a strong S-domain. 
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Proposition 4.22. Suppose that R is a coherent domain and that T an integral 
extension of R. Then, if 8, the integral closure of R, is a finite R module, then T 
is an S-domain and consequently R is an S-domain. 

Proof. Since R is coherent and R=R[a,, . . . . a,] is a finite R-module, it follows by 
Corollary 1.4 [lo] that R is coherent. Thus R is an integrally closed coherent domain 
and hence a PVMD. It follows by Theorem 4.16 that T is an S-domain and ‘by Pro- 
position 4.6 R is an S-domain. 

The following example shows that a strong S-domain may not be coherent. 

Example 4.23. Let IJ be a nontrivial valuation ring with quotient field L and I’ is 
of the form i/= K+M, K being a subfield of L and M the maximal ideal of V. Let 
R be a subring of K which is a Priifer domain and k its quotient field. Also suppose 
that K/k is an algebraic extension but [K : k], the degree of K over k, is not finite, 
then RI = R + A4 cannot be coherent. (Or else we may suppose that A4 is a non- 
finitely generated ideal of RI, then also RI is not coherent.) We shall prove in t+e 
next section that RI is a strong S-ring. 

5. Strong S-rings and D + M construction [9] 

Let V be a nontrivial valuation ring with quotient field L, and assume that V is 
of the form K+M, where K is a field and n/r is the maximal ideal of V. Let R be 
a domain that is a proper subring of M, and let R, = R + A4. Also suppose that k is 
the quotient field of R. 

Theorem 5.1. RI is a strong S-ring if and onIy if R is a strong S-ring and K/k is 
an algebraic extension of k. 

Proof. Let RI be a strong S-domain. Since R z RI/M, R is a strong S-ring for 
homomorphic images of strong S-rings are themselves strong S-rings. By Theorem 
5.4 in [9], dim R1 [X] = dim R[X] -+- dim V+ inf(d, 1) where d denotes the transcend- 
ence degree of Wk. But R, and R are both strong S-rings, it follows that 

dimRJX]=dimR1+l and dimR[X]=dimR+l. 

Hence dim RI + 1 = dim R + 1 + dim V+ inf(d, l), but dim R, = dim R = dim V by 
the Theorem 2.1 [9]. So dim RI + I = dim R + 1 + inf(d, 1). This implies that 
inf(d, 1) = 0 and therefore d = 0. Therefore K/k is algebraic. 

Conversely, suppose R is a strong S-ring and K/k is an algebraic extension. Let 
QlCQ2 be adjacent primes of RI. Then three different cases may arise. 
Case 1. If IMc Q,, Q2 then Qi = pi + A& where Pi are prime ideals of R. Clearly 
PI C & are adjacent primes of R, for if f), C_ P c Pz, then Q = P+ M is a prime ideal 
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of R, and Qi c Q c Qz. But then Q, C Q2 are adjacent primes of RI, either Qt = Q 
or Q2 = Q; consequently P= PI or P= Pz. Now R is a strong S-ring so that 

P1 [X] C R[X] are adjacent primes of R, [X] because Qi[X] fI R[X] = Pi[X]* 
Case 2. If QI C, M and MC lQz, then as Q1 C Qz is a pair of adjacent primes of RI 
either QI = A4 or Qz = AZ. In either case the argument in case 1 completes the proof. 
Case 3. If Qi, Qz are both contained in M, then they are both prime ideals of V, 
but I’ is a valuation ring and hence a strong S-ring. Therefore Qi [X] c Q2[X] are 
adjacent primes. 

Theorem 5.2. Let R be a domain with quotient field K and 
R, is a strong S-ring if and only if R is a strong S-ring. 

Proof. Let RI be a strong S-ring. Then, as RI ,vKI,yl= R 
strong S-ring. 

RI = R + XK[X]. Then 

it follows that R is a 

Conversely, let R be a strong S-ring and Q1 C Q2 be adjacent primes of RI. We 
consider the following two cases: 

Case I. If Qr and Qz are not both principal, then Qi = Pi +XK[X], where Pi are 
prime ideals of R. Clearly P, c P2 is a pair of adjacent primes of R. But R is a 
strong S-ring, so PI [ I’] c P,[ Y] are adjacent primes in R[ I’]. As Q, [ Y] n R[ Y] = 
P, [ Y]. QI [ Y] C Q2[ Y] are adjacent primes in RI [ Y]. 
Caw 2. If Q, is not a principal ideal but Qz is a principal ideal then Qz is a height 
I maximal ideal of RI such that Q,(7 R = (0), hence Q, 0 R = :O) forcing Q, = (0). If 

Qz =_fis)K, , where f(s) is irreducible in K[X] and f(0) = 1, then Qz =f(s)R, = 
Q2K[A’]nR, and Qz is a height 1 prime ideal of K[X]. Pow K[X] is a strong 

.S-ring, ho that Q: [ I’] must be of height 1 hence (0) c Q?[ Y; are adjacent primes. 

We now examine the behatiour of the strong S-property in twa other construc- 
tions, which are similar to the previous ‘R + M’ constructicn. The details of these 

conhtructions are given in [S] and [ 121. 

Let L be a field and K a subfield of L and { C’,}:, 1 a finite collection of nontrivial 

1 ;tluation rings of L such that (i) k’, Q I,‘; for i #j; and (ii) each V, is of the form 
K t M,, ‘21, t hc masimal ideal of I’, . Lel D, be subrings of A’ with quotient fields 
k, and act J, = D, + AI,, J- ny , J, and I,‘= ny , L’;. If IV, - P’nM,, then H,=M,nJ 
;md .I1 = 1-y I H, and then 

Lfkiso 31 =: n:, , ,V,. Denote by C1 the set of all primes that are contained properly 

in some Ii, and C? the set of all primes of J that contain some Hi. 
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Proof. Suppose first that J is a strong S-ring. To prove that each Di is a strong 
S-ring, we first note that by Theorem 4.10 of [l] J;/M, = Di = J/Hi. Moreover, J, 
is a quotient ring of J. Now since J is a strong S-ring, it follows Ji is a strong 
S-ring. But then Di is a homomorphic image of Ji, hence Di is a strong S-ring and 
by Theorem 4.1 K/k; is a algebraic over ki. 

Conversely, let Di be a strong S-ring and K/ki be algebraic over ki, then by 
Theorem 5.1 Ji is a strong S-ring for each i. Moreover, for each maximal ideal M 
of J, M contains a unique Hi and there is a prime ideal Pi of Ji such that 
Pin J= M. Moreover, each Ji is a quotient ring of J and JM = (J& Thus, JM is a 
strong S-domain for each maximal ideal M of J and by Proposition 2.3, J is a strong 
S-domain. 

Remark 5.4. Observe that in [3] Example 3 shows that if D(X) is a strong S-ring, 
(D+ M)[X] need not be a strong s-ring. 

Let I$ be independent valuation domains with quotient field L and K, be the 

residue field of I$ for all i, 1 s i 5 n. Let K be embedded in C:; , Kj via the diagonal 
map and Da subring of K. Set Jj=D+Mj, J=n:=, Jl, I’=(-):_, a/,. Then 

J=i)Jj=D+i)Mj 
r-l I= I 

is a domain with quotient field L. Assume k is quotient field of D. Then we have: 

Theorem 5.5. J is a strong S-domain if and only if D is a strong S-domain and K/k 
is algebraic. 

Proof. Let D be a strong S-ring and K/k an algebraic extension. Suppose P 1 c Pz 
are adjacent primes of J. Now each prime ideal of J compares with I= n:_, Mj 
[ 121. Once again three cases arise. 
Casel. lfISP,CPz,thenI=nM,c_P, impliesthereexistsanisuchthatM,cP,. 
Therefore Mj C_ PI Cfl and there exist prime ideals Q, and Qz of D such that 
P, = Q, + I, P2 = Q2 -I- I. Since P, c Pz are adjacent primes, Q1 c Qz are also 
adjacent primes of D, it then follows for each fixed i that Q+ M, C Q2 + M, are 
adjacent primes in J,. But Q, + M, c PJ as M, C P,, j = 1,2, and P, = Q, + I c Q, + M,. 
Therefore P, = Q, + M,. Now J, is a strong S-ring implies (Q1 + M,)[X] C 

(Q:+ M,)[X] are adjacent primes of J,[X]. As (Q, -t M,)[X] = P,[X] therefore 
P,[X] C PJX] are adjacent primes of J[X]. 
Case 2. If PC 1~ Pz, then 1~ Pz implies there exists an integer i such that M, c Pz. 
Therefore P1 C_ MjsPz, it now follows that P, c M,n(n,+, Jk) C_ P?. But PI C P- 

are adjacent primes of J, therefore either 
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If Pt=AJjf)(nk+,Jk), then as IcMjfl(n,+iJk), j=P,. Hence PI=Mj. If 
Pl=Mjfl(n,,, Jk), then as MjCPz=Mjr)(nk+, Jk)CMj, Pz=Mj. Thus either 
PI = M, OH Pz = Mj and case 1 occurs. Therefore P1 [X] C P2[X] are adjacent 
primes. 
Case 3: If P, C P2 c I = n;= 1 Mj, then P, and P2 are ideals in each Ji and prime 
ideals of I$ for each i. Because if Y E I$ and XE Pj choose mj E Mi\ Pi, then XY E Ji 

and mj E Jj impiies xymj = x(ymi) E Pj but mj $ Pj implies XY E Pj thus Pi and P2 are 
prime ideals of v. But then vl; is a valuation ring ant hence a strong S-ring. Thus 
P, [A’] C P-&X] are adjacent primes of JlX]. 

Conversely, let J be a strong S-ring, then since D is homomorphic image of J, 

D is a strong S-ring. Now by invoking Theorem 5.1 for each fixed i, Jj is a strong 
S-ring and K/k is an algebraic extension of k, 
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